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Abstract— Intuitive Teleoperation interfaces are essential for
mobile manipulation robots to ensure high quality data col-
lection while reducing operator workload. A strong sense of
embodiment combined with minimal physical and cognitive
demands not only enhances the user experience during large-
scale data collection, but also helps maintain data quality
over extended periods. This becomes especially crucial for
challenging long-horizon mobile manipulation tasks that re-
quire whole-body coordination. We compare two distinct robot
control paradigms: a coupled embodiment integrating arm
manipulation and base navigation functions, and a decoupled
embodiment treating these systems as separate control entities.
Additionally, we evaluate two visual feedback mechanisms:
immersive virtual reality and conventional screen-based vi-
sualization of the robot’s field of view. These configurations
were systematically assessed across a complex, multi-stage
task sequence requiring integrated planning and execution.
Our results show that the use of VR as a feedback modal-
ity increases task completion time, cognitive workload, and
perceived effort of the teleoperator. Coupling manipulation
and navigation leads to a comparable workload on the user
as decoupling the embodiments, while preliminary experi-
ments suggest that data acquired by coupled teleoperation
leads to better imitation learning performance. Our holistic
view on intuitive teleoperation interfaces provides valuable
insight into collecting high-quality, high-dimensional mobile
manipulation data at scale with the human operator in
mind. Project website: https://sophiamoyen.github.
io/role-embodiment-wbc-moma-teleop/

I. INTRODUCTION

The availability of large-scale robotic manipulation
datasets has increased significantly in recent years, fueling
advancements in learning-based approaches for robotic con-
trol [1]–[5]. These datasets predominantly focus on station-
ary robotic arms and rely on teleoperation interfaces that
are well-suited for fixed-base manipulators. This reduces the
operational complexity to a predetermined, stable workspace,
significantly simplifying the control paradigm. In contrast,
real-world environments, such as households and assistive
scenarios, demand mobile manipulators capable of navigat-
ing through an environment for executing diverse and robust
manipulation policies. Despite the increasing need for such
robots, large-scale datasets for mobile manipulation remain
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Fig. 1: Mobile manipulation teleoperation in Simulation and on
the real robot using different Controllers (WBC and SBC) and
visualization modalities (with VR and without).

limited, with only recent efforts beginning to emerge [6].
Mobility expands the robot’s operational workspace but
increases control and feedback complexity. As a result, data
collection for mobile manipulation teleoperation becomes
more challenging, requiring user to maintain situational
awareness over a dynamic and large operation space, raising
cognitive load and the need for effective feedback. Thus,
intuitive teleoperation interfaces that balance embodiment,
cognitive demand, and task efficiency are essential for scal-
able, high-quality data collection in mobile manipulation
learning.

Various control strategies have been proposed to enhance
operator efficiency in a task-specific way [7]–[9]. Studies
have explored a variety of attitudinal measures, such as
workload, usability, simulation sickness, and behavioral met-
rics, e.g., task completion time, trajectory smoothness, and
ergonomic data. In an effort to create a standardized eval-
uation protocol for mobile manipulation teleoperation, Wan
et al. [10] proposed a performance and usability evaluation
scheme. However, existing studies focus on short-horizon
tasks that require minimal manipulation skills, overlooking
the complexities inherent in long-horizon mobile manipula-
tion. In real-world scenarios, effective teleoperation involves
the precise control and coordination of upper and lower body
movements, error recovery, and sustained user experience
over extended operation periods. Addressing these challenges
is crucial to the design of intuitive and efficient teleoperation
interfaces for mobile manipulation in diverse environments.
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To address these gaps, we present a comprehensive study
that goes beyond short-horizon tasks and low-manipulability
scenarios by evaluating teleoperation in complex, long-
horizon mobile manipulation settings. Our work studies the
interplay between control strategies of the robot and feedback
mechanisms for the teleoperator. Our main contribution is a
holistic analysis of the two key aspects of data collection
for mobile manipulation: the teleoperation framework and
the feedback interface. Two example combinations can be
seen in Fig. 1. Beyond standard performance metrics, we
assess operator experience across extended task durations.
Specifically, we examine task performance, physical and cog-
nitive workloads to provide insights for high-quality large-
scale data collection with the human teleoperator in mind. By
systematically analyzing different teleoperation frameworks
and feedback interfaces, we aim to optimize data collection
for scalable mobile manipulation robot learning.

II. RELATED WORK

User interface design is a critical component of tele-
operation, particularly for mobile manipulation. Mobile
ALOHA [6] converted the ALOHA setup [11] into a mobile
system in which a replica of the bimanual robotic setup
is used for teleoperation. Their findings indicate that naive
teleoperators achieved near-expert performance after five
trials, emphasizing the learning curve associated with well-
designed interfaces. However, replicating a robotic setup
is a difficult task. The TeleMoMa system [12] explored
different input modalities, including VR controllers, vision-
based tracking, and space mice, to assess their impact on
user performance. Results indicated that hybrid approaches,
where multiple control schemes are available, improved both
intuitiveness and precision. Zhao et al. [11] studied how
teleoperation frequency affects performance, demonstrating
that reducing control frequency from 50Hz to 5Hz led to a
62% increase in task completion time.

Recent studies have examined multimodal control sys-
tems that integrate vision, haptics, and auditory feedback to
enhance teleoperation effectiveness [12]–[23]. In [24] and
[25] the authors compared VR and traditional 2D interfaces,
finding that VR offered better spatial awareness at the cost
of longer task completion times. Similarly, exoskeleton-
based teleoperation setups have shown good performance
in teleoperation tasks [26]. Learning-based teleoperation has
been applied to humanoids using Mixed Reality [27] and 3D
Human Pose Estimation [28].

Overall, advancements in teleoperation interfaces have
focused on improving ergonomics, reducing workload, and
increasing task success rates through multimodal interaction
and adaptive control strategies. In this work, we provide
useful insights along these lines on the effectiveness and
ease of use for teleoperation in cognitively challenging
long-horizon mobile manipulation scenarios by studying the
effects of using different control embodiments and feedback
modalities on the teleoperators’ experience.

III. TELEOPERATION SYSTEM DESIGN

In this paper, we study how different control embodiments
and feedback modalities in a teleoperation setup affect users’
ability to comfortably and efficiently perform complex tasks
that require both navigation and precise object manipulation.
The user study objectively compares different system inter-
faces through a tailored task sequence. In addition to task
performance, we collect a range of data on cognitive and
physical workload, along with user experience.

The teleoperation setup is composed of an HTC Vive Pro
Virtual Reality (VR) setup to control a PAL Tiago++ robot
with an omnidirectional base. This user study compares two
different Controllers: a Whole Body Controller (WBC) and a
Separate Body Controller (SBC). For providing feedback to
the teleoperator, we study two distinct Modalities: with Vir-
tual Reality (i.e., the VR headset) or without VR (on an ex-
ternal screen). In total, there are four possible combinations
of interfaces. Both controllers leverage a joint impedance
controller, which enables safe interaction. The entire setup
with the different control and feedback modalities is shown
in Fig. 2. A simulation environment in Gazebo is built
replicating the real study scenario and is used for training
purposes only.

A. Controller Embodiments

The SBC controller consists of independent control sys-
tems that decouple the base motion from the arm motion.
This decoupling provides an operator the option to separately
control either embodiment as required. Following [29] and
[30], the arm controller employs an inverse kinematics (IK)
solver with null-space resolution to compute the desired joint
angle configurations based on the relative change in the end-
effector pose estimated from VR controllers at 30 Hz. For the
null-space optimization, we use a manipulability criterion to
favor feasible arm postures and avoid unreachable task poses,
similar to [30]–[32]. The IK solver is implemented using the
Pinocchio motion library [33]. The mobile base employs a
3D rudder with an attached VR tracker, inspired by [34],
to translate velocity inputs into relative position changes
of the base. The WBC framework [35] running at 15 Hz
combines a whole body controller to compute desired joint-
space motion via Task Space Inverse Dynamics by QP, using
the TSID library [36], and joint impedance. The user, who is
only using a VR controller, can switch between end effector
(EE) mode and whole-body manipulation (WBM) mode,
which trade off different sets of task objectives. Whereas
in EE mode, direct teleoperation of the EE without base
motion is prioritized, the WBM mode keeps the EE stable
while the user directly teleoperates elbow and the base while
considering self-collision avoidance.

B. Feedback Modalities

In the With VR modality, the participants were asked
to wear the VR headset and were able to switch between
2 stereo cameras placed statically around the room and 1
stereo camera placed on top of the robot’s head. The robot
head movement was additionally controlled by the headset
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Fig. 2: Detailed overview of (a) the components of robot teleoperation, data recording and visual feedback, and how they communicate,
(b) their usage in the teleoperation setup, and (c) the room arrangement used for the real-world task sequence.

motion. In the Without VR modality, participants did not
wear the headset and could look around the room while
simultaneously viewing all three camera streams on a screen.

C. Task Sequence

To assess the capabilities of the Controllers, we asked
users to perform tasks that require reasonable use of all
navigation and object manipulation features applied to var-
ious tasks. To assess the capabilities of the visualization
Modalities, the proposed tasks should require refined pose
estimation of objects and good localization of the robot itself
by the user. We adopt, therefore, a long-horizon sequence
of tasks in a kitchen environment. The robot starts in an
angled parking space with the left arm in a raised pose. While
seated, the user must control the robot with their left arm to
perform the following sequence of tasks: Drive toward the
drawer and open it (Task 1); pick up a bottle on the other
side of the kitchen counter (Task 2); drop the bottle inside
the drawer (Task 3); close the drawer (Task 4); and park
the robot back in its parking space (Task 5). This proposal
not only realistically attests the mobility capabilities of the
system but can also significantly reduce the time needed to
perform the user study since the tasks are sequential, with
no need for complex environment resets for the next trial. A
schematic of the experimental setup is shown in Fig. 2b.

Each task requires the effective coordination of both the
upper and lower body of the robot to navigate to a given loca-
tion, accurately move the arm to a target pose, and seamlessly
synchronize the motion of both the upper and lower body
to complete the task. For example, in Task 1, the operator
must navigate the robot base so that the drawer is within
the reach of the robot to grasp the handle while allowing
enough space for the robot to open the drawer, demanding
fine-tuned spatial reasoning and control. Task 2 introduces
additional complexity, as the operator must navigate the robot
across the kitchen and precisely position the arm to grasp a
bottle on the counter, requiring careful coordination between
base mobility and arm dexterity. Task 3 further amplifies
the challenge, as the operator must maintain stability while

transporting the bottle and align the arm to place it inside
the drawer, requiring precise timing and spatial awareness.
Task 4 involves closing the drawer, which requires delicate
force control and alignment to avoid collisions, while Task
5 demands accurate navigation and positioning to return the
robot to its parking space, often under time constraints.

Moreover, given the long-horizon nature of the task se-
quence, operators are prone to fatigue, which may subse-
quently increase the cognitive load to effectively coordinate
both the upper and lower body of the robot. The need
for continuous attention to both navigation and manipu-
lation, coupled with precise pose estimation and localiza-
tion, underscores the complexity of teleoperation for mobile
manipulation. This challenge is further exacerbated by the
sequential dependency of tasks, where errors in early stages
can compound, making recovery difficult and increasing the
overall difficulty of the operation.

IV. USER STUDY

A. Study Design

We test 2 independent variables as part of our study:
Controller and visualization Modality. We test 2 different
controllers: SBC and WBC. For the Modality, we compare
the use of the VR Headset (“with VR”) or an external
display (“without VR”). In total, we have 4 combinations
of user interfaces. We test each combination 3 times to
track the improvement of the user performance over runs
of the proposed tasks. This adds another dimension to the
independent variables of the study that we will call Trial.

Similar to LeMasurier et al. [25], we opt for a 2 (Con-
troller) × 2 (Modality) × 3 (Trial) mixed study design, with
Controllers being tested between-subjects and Modalities and
Trials within-subjects. An Overview can be found in Table I.
Having N registered participants, each half N/2 tests only
one of the two Controllers, which requires all registered
participants to be stratified according to personal features that
may influence the outcome of the study (e.g. experience with
VR). To track the learning curve, the participants perform
3 Trials of the assigned controller with both Modalities. To



mitigate priming bias, we randomize the order in which each
Modality will be tested by the participant. In total, each
participant would then do 6 runs of the task sequence (i.e. 3
Trials with each of the 2 Modalities).

Type of Analysis Options
Controller Between-Subjects WBC / SBC
Modality Within-Subjects With VR / Without VR
Trial Within-Subjects 1 / 2 / 3

TABLE I: Options and type of analysis for each of the controlled
variables.

B. User Study Protocol

The whole study for each participant lasts around 2 hours.
Initially, participants were asked to fill out a personal data
questionnaire with relevant questions for the stratification
between Controllers as well as consent forms. We then asked
the participant to wear an upper-body motion-tracking suit,
following which a calibration procedure was done for the
motion capture to accurately track the participant’s body.
After the calibration, the order of the Modality is randomly
selected, and a short instruction about the system and the
task is given. Once the participant understood the system and
the task, they were given 6 minutes to train in simulation
with each Modality in the defined order. The participant
was initially given the choice of freely controlling the robot
without any task at hand. Once they felt confident, they were
asked to attempt the first task of reaching and opening the
drawer, and subsequently of grasping the bottle. This was
done to allow participants to get used to the system. After
the simulation training phase with both modalities (with and
without VR), the participant was then given 4 minutes of
training time in the real world, similar to the VR training
phase according to the order of the modalities. Once the real-
world training was done for a given modality, the participant
was then asked to teleoperate the robot to perform the tasks
described in Sec. III-C. The participants had 3 trials in the
real world to perform the overall task sequence. Once the
3 trials for the first modality were done, the entire process
of real-world training followed by the 3 trials for the task
sequence was repeated for the second modality.

C. Metrics

To evaluate our user study, we use a combination of
behavioral and attitudinal metrics. Behavioral metrics include
ergonomics data, robot data, VR setup data, and task per-
formance data, such as completion times and performance
scores (e.g., Success: 10, Partial Success: 7, Partial Failure:
4, Failure: 0). We also track motion data using an Optitrack
system to calculate postural scores (RULA) and Center
of Mass (CoM) divergence [37] for the left upper arm.
Moreover, all information related to the HTC Vive controller,
headset, and tracker poses and velocities as well as the
robot’s joint states and chosen camera stream are recorded
in a ROSBAG.

Attitudinal metrics are gathered through standardized
questionnaires, simplified to have questions relevant to our

scenario, and administered at different stages of the study.
We do so to reduce participant fatigue during the ex-
periment. Short usability (SEQ) [38] and workload (Air
Force Flight Test Center Revised Workload Estimate Scale
“ARWES/CSS” [39]) questionnaires are collected after each
trial. More detailed assessments, like the NASA Task Load
Index (TLX) [40], [41] for workload, the Usability Metric
for User Experience (UMUX) [42] for usability, and the
Operational Assessment of Training Scale (OATS) [43] for
training effectiveness, are conducted after all three trials for
a given feedback Modality. Additionally, a simplified version
of the Simulation Sickness Questionnaire (SSQ) [44], [45]
is used to assess discomfort after the “with VR” Modality
trials. Lastly, participants provided feedback on the interface
comparisons upon completing the study.

V. RESULTS

The study was conducted for 20 participants, stratified
as equally as possible between both controllers according
to selected relevant features, including VR-, videogame-
, teleoperation- and driving-experience as well as handed-
ness, gender and possession of eyesight conditions. Partic-
ipants were mostly young adults (SBC: 24.4y±3.9, WBC:
25.4y±3.2) holding or pursuing a Master’s degree (SBC:
60%, WBC: 70%) and right-handed (SBC: 9, WBC: 9)
working in the field of engineering (90% overall).

Most metrics collected failed the Shapiro-Wilk normality
test (p<0.05), leading to the usage of non-parametric tests
for statistical significance verification. For metrics collected
after all trials of each Modality, a Mann-Whitney U Test
was applied to the between-subject variable Controller and
a Wilcoxon Signed-Rank Test was applied for the within-
subject variable Modality. For metrics collected every trial,
Linear Mixed-Effects Model (LMM) was, due to the added
dimension of the Trials effect, representing repeated mea-
sures. LMM includes random effects at the participant level
to control for individual differences, making it more robust
than repeated-measures ANOVA, which assumes sphericity
and normality. The results of the statistical tests can be seen
in Table II and will be explained in further detail in the
following subsections.

A. Task Performance

1) Completion Times: The choice of Modality and Con-
troller has a significant impact on task completion time.
The usage of VR increases total completion time by 142
seconds (p=0.026) due to limited depth perception. The SBC
Controller with its separate base movement leads to a faster
task completion time (-169 seconds, p=0.025) compared to
the WBC Controller. The number of Trials had a positive
effect on completion time (-31.64 seconds per trial, p=0.12),
indicating a learning effect over repeated attempts.

2) Success Rate: Participants consistently demonstrated
a high level of task execution success across all conditions,
with an average task score of 9.4 out of 10 (p<0.0001). Con-
troller type and visualization modality showed no statistically
significant effect on success rate. WBC (-1.50 points, p=0.27)



Assessment Controller Modality Trial
Usability

SEQ None Strong Marginal
UMUX None Strong NA

Workload
ARWES None Very strong None
Physical Demand Slight Strong N/A
Mental Demand None Strong N/A
Temporal Demand None Marginal N/A
Performance None Strong N/A
Frustration None Slight N/A
Effort None Very strong N/A

Ergonomics
RULA None None None

Task Performance
Completion Times Slight Slight None
Success Rate None None None

TABLE II: Statistical test results on the impact of Controller,
Modality and Trial on Human Workload and Task Performance
indicated by p-value. None p > 0.1, Marginal 0.1 > p > 0.05,
Slight 0.05 > p > 0.01, Strong 0.01 > p > 0.001 and Very
Strong p < 0.001.

Fig. 3: Mean values for the Simple of Ease Question (SEQ)
over trials across controllers and modalities in the real world
experiments. A higher SEQ score indicates better usability and ease.

and VR (-1.20 points, p=0.37) performed slightly worse on
average. Performance remained stable across Trials, with no
notable learning or fatigue effects. Furthermore, there was no
significant variation across different tasks, meaning no single
task was consistently harder or easier than the others. Unlike
the completion time analysis, where with VR significantly
increased task duration, here we see that performance scores
remained unaffected by visualization modality, implying that
while VR may slow down execution, it does not necessarily
lead to task failure or lower performance quality.

B. Human Interface Assessment

1) Usability: The SEQ questionnaire that was collected
over all Trials shows only the easiness of use dimension
of usability, while the UMUX was collected only after the
end of each Modality test and gives a more comprehensive
overview of the usability scope. The main effect of trial
number suggests a marginal but not statistically significant
increase in SEQ scores over trials (p=0.068). This indicates

Fig. 4: Radar plot of the mean values of the NASA TLX individual
scores for all 4 interface combinations. The scale goes from 0
(not demanding) to 100 (extremely demanding). A smaller area
corresponds to a lower workload for the user. Both combinations
with VR (in blue) appear to have a significant higher workload
across all features. For almost all features, the WBC has worse
results than the SBC, except for ”Physical Demand”, which is
slightly higher for the SBC.

that there may be a slight learning effect, where participants
find it easier to accomplish the proposed task over repeated
trials. The main effect of Controllers was not significant for
the SEQ scores (p=0.386). This suggests that the mean SEQ
scores for SBC and WBC cannot be statistically differenti-
ated, indicating similar post-trial interface complexity per-
ception. Detailed results can be seen in Figure 3. However,
when looking at the UMUX results, a suggestively better us-
ability score for the SBC over the WBC (p=0.15) was found,
indicating that other dimensions of usability not included in
SEQ, such as frustration, expectation fulfillment or frequent
error compensation, may be the main disadvantage of the
WBC over the SBC. Regarding the Modalities, participants
found tasks significantly harder in the with VR condition
compared to without VR according to both usability scores
SEQ (p=0.003) and UMUX (p=0.006).

2) Workload: The ARWES questionnaire was collected
over all Trials and resumes the workload assessment with
only one question, while the NASA TLX was collected only
after the end of each Modality test and gives a more compre-
hensive overview of the cognitive- and physical demands of
the system. ARWES results indicate that the usage of the VR
HMD imposed a substantially higher workload on the user
than the usage of assistive screens. Results of the NASA
TLX confirm this, indicating the with VR Modality resulted
in higher perceived workload, requiring more cognitive and
physical effort while reducing performance. The statistical
testing and mean TLX scores also suggest that while the
type of Controller had minimal influence on other workload
dimensions, SBC induced more perceived physical strain
(p=0.02), whereas WBC led to higher frustration levels
(p=0.009), which aligns with the discussion presented in
the usability results section. For more detailed results of the
NASA TLX see Figure 4 and 5.

3) Ergonomics: Regarding the final RULA score for
interface combination comparison, the results showed no
significant effect of Controller (p=0.6) or Modality (p=0.4),



Fig. 5: Boxplot of the overall raw NASA TLX score. An interpre-
tation benchmark for the NASA TLX results is shown, associating
the scores level of workload, as defined in [46]. The average scores
for with VR modality are higher than without VR, falling in the
high workload classification, while the average score for the trials
without VR is considered somewhat high workload.

which suggests that ergonomic risk did not vary significantly
between SBC and WBC, nor between with VR and without
VR conditions. Similarly, there was no significant effect of
Trial number (p=0.29), indicating that participants did not
experience substantial ergonomic improvements or declines
over repeated trials. The main goal here was, however, to
evaluate the proposed teleoperation setup in terms of a global
ergonomic benchmark. The mean total RULA score was
4.12±0.27, indicating medium musculoskeletal disorders risk
over prolonged sessions. The higher RULA score is mainly
to the upper arm subscore of RULA that had a mean of
3.28±0.23, indicating average operation of the upper arm at
an elevation angle between 45° and 90°. The wrist subscore
was also relatively high, with 2.86±0.22, indicating frequent
wrist bend of more than 15°, essential for teleoperating end-
effector (EE) movements for both Controllers. The scores
for neck, trunk and lower arm are between 1 and 2, the
lowest possible, indicating mostly upright position and hor-
izontal forearm pose. Furthermore, we can look at the CoM
divergence results over time for signs of excessive whole-
body engagement and postural instability. By analyzing an
example of the task being performed by expert users in
Figure 6, we observe that the WBC exhibits significantly
greater variation in CoM divergence values than SBC. In the
WBC, for locomotion, the base motion is temporarily acti-
vated by the user, whose controller’s pose difference is then
mapped the robot’s wheels velocities. Thus, the increased
CoM divergence is inherent to the design of the WBC control
strategy for integrating locomotion, rather than a result of
user inexperience. The greater variations in CoM for WBC
indicate a more physically demanding control method, which
may contribute to greater fatigue over extended usage.

Fig. 6: Comparison of CoM Divergence of both controllers without
VR from expert users shows frequent CoM shifts for WBC.

C. Virtual Reality

In the with VR Modality, users of the SBC used
more the head camera view than users of the WBC (t-
test: p<0.0001), namely µ=60.4±38% of the task trials for
SBC and µ=36.8±39% for the WBC, indicating a higher
sense of embodiment and confidence for SBC uses. For both
Controllers, Tasks 3 and 5 had a higher usage of the 3rd-
person view cameras for locomotion assistance. As to the
analysis of the 9-symptoms SSQ questionnaire, a correction
factor allowed us make an approximate interpretation of
from the 16-symptoms SSQ benchmark. Results indicate the
experimented VR sickness for the real world experiments is
on the edge of significance to concerning. For the simulation
trials, VR sickness could be considered minimal, which is
also a reflection of shorter amount of time the users spent
teleoperating in simulation. Identified improvements in the
video stream delays and video resolution could substantially
reduce the experimented VR sickness.

D. Simulation Training

The reduced OATS results indicate that the simulation
training is of relatively high relevance (µ=4.75±1.2), efficacy
(µ=4.8±1.2) and overall quality (µ=4.78±1.2) on a 7-point
Likert scale. SEQ ease of use results indicate completion of
the tasks in simulation more difficult (with VR: p=0.015,
witout VR: p=<0.0001) than in real world, but not signif-
icantly more physically or mentally demanding according
to ARWES results (p>0.8). The higher perception of task
difficulty is a reflection not only of the priming bias, since
simulation was the participants’ first interaction with the
system, but also reportedly lower sense of presence due to
lack of audio feedback when compared to teleoperating the
real robot in the same room.

VI. PRELIMINARY IMITATION LEARNING EXPERIMENT

We conducted a small-scale experiment to assess the suit-
ability of data collected with SBC and WBC for downstream
imitation learning. We collected 50 trajectories for each



controller without VR for the first task of reaching and
opening a drawer, and trained a transformer-based Diffusion
Policy [47] without visual input. The state space consists of
the robot’s 10-DoF joint state (3 for the base and 7 for the
arm), end-effector 3D position and 1D position of the drawer
opening acquired by Optitrack. The action space consists of
the 10 DoF desired joint state and the gripper state.

We report success rates of 0 % and 80 % out of 5 trials
with the SBC and WBC data, respectively. We attribute
the failure of the SBC policy due to the lack of base-arm
coupling in the motion signals which make the learned pol-
icy more susceptible to encounter out-of-distribution states.
While not statistically representative, we take this as an
indication that WBC data is better suited for our imitation
learning approach.

VII. CONCLUSION AND FUTURE WORK

In this article, we present a comprehensive user study on
the usability of teleoperation interfaces for mobile manipu-
lation. We assess multiple combinations of embodiment and
visual feedback on a long-horizon mobile manipulation task
sequence. Our study indicates that while both the coupled
and decoupled embodiment of manipulation and navigation
lead to comparable workload on the user, they induce
different strategies for solving the task. Our SBC, which
decouples arm and base control interfaces, achieves shorter
completion times by users exploiting the direct base control
and less frustration. Furthermore, our results show that
visual feedback in the form of VR instead of screen-based
camera streams increases cognitive and physical workload.
A thorough investigation of the collected data quality for
imitation learning remains to be done; however, preliminary
results indicate better data quality in motion data that couples
arm and base motion, generated by the WBC. Therefore, we
plan to enhance usability of our WBC with simplified base
control for future data collection. Also, an analysis of the
effects of extending the teleoperation controllers to different
feedback modalities like haptic or audio remains a promising
extension of this work.
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